Page 3 of 18
30. The ancient and received principle, which Dr. Barrow here mentions as the main foundation of Tacquet's CATOPTRICS, is that: 'every visible point seen by reflection from a speculum shall appear placed at the intersection of the reflected ray, and the perpendicular of incidence:' which intersection in the present case, happening to be behind the eye, it greatly shakes the authority of that principle, whereon the aforementioned author proceeds throughout his whole CATOPTRICS in determining the apparent place of OBJECTS seen by reflection from any kind of speculum.
31. Let us now see how this phenomenon agrees with our tenets. The eye the nearer it is placed to the point B in the foregoing figures, the more distinct is the appearance of the OBJECT; but as it recedes to O the appearance grows more confused; and at P it sees the OBJECT yet more confused; and so on till the eye being brought back to Z sees the OBJECT in the greatest confusion of all. Wherefore by sect. 21 the OBJECT should seem to approach the eye gradually as it recedes from the point B, that is, at O it should (in consequence of the principle I have laid down in the aforesaid section) seem nearer than it did at B, and at P nearer than at O, and at Q nearer than at P; and so on, till it quite vanishes at Z. Which is the very matter of fact, as anyone that pleases may easily satisfy himself by experiment.
32. This case is much the same as if we should suppose an Englishman to meet a foreigner who used the same words with the English, but in a direct contrary signification. The Englishman would not fail to make a wrong judgment of the IDEAS annexed to those sounds in the mind of him that used them. Just so, in the present case the OBJECT speaks (if I may so say) with words that the eye is well acquainted with, that is, confusions of appearance; but whereas heretofore the greater confusions were always wont to signify nearer distances, they have in this case a direct, contrary signification, being connected with the greater distances. Whence it follows that the eye must unavoidably be mistaken, since it will take the confusions in the sense it has been used to, which is directly opposed to the true.
33. This phenomenon as it entirely subverts the opinion of those who will have us judge of distance by lines and angles, on which supposition it is altogether inexplicable, so it seems to me no small confirmation of the truth of that principle whereby it is explained. But in order co a more full explication of this point, and to show how far the hypothesis of the mind's judging by the various divergency of rays may be of use in determining the apparent place of an OBJECT, it will be necessary to premise some few things, which are already well known to those who have any skill in dioptrics.
34. FIRST, any radiating point is then distinctly seen when the rays proceeding from it are, by the refractive power of the crystalline, accurately reunited in the retina or fund of the eye: but if they are reunited, either before they arrive at the retina, or after they have passed it, then there is confused vision.
35. SECONDLY, suppose in the adjacent figures NP represent an eye duly framed and retaining its natural figure. In Fig. 1 the rays falling nearly parallel on the eye, are by the crystalline AB refracted, so as their focus or point of union F falls exactly on the retina: but if the rays fall sensibly diverging on the eye, as in Fig. 2, then their focus falls beyond the retina: or if the rays are made to converge by the lens QS before they come at the eye, as in Fig. 3, their focus F will fall before the retina. In which two last cases it is evident from the foregoing section that the appearance of the point Z is confused. And by how much the greater is the convergency, or divergency, of the rays falling on the pupil, by so much the farther will the point of their reunion be from the retina, either before or behind it, and consequently the point Z will appear by so much the more confused. And this, by the bye, may show us the difference between confused and faint vision. Confused vision is when the rays proceedings from each distinct point of the OBJECT are not accurately recollected in one corresponding point on the retina, but take up some space thereon, so that rays from different points become mixed and confused together. This is opposed to a distinct vision, and attends near objects. Faint vision is when by reason of the distance of the object or grossness of the interjacent medium few rays arrive from the object to the eye. This is opposed to vigorous or clear vision, and attends remote objects. But to return.
36. The eye, or (to speak truly) the mind, perceiving only the confusion itself, without ever considering the cause from which it proceeds, doth constantly annex the same degree of distance to the same degree of confusion. Whether that confusion be occasioned by converging or by diverging rays, it matters not. Whence it follows that the eye viewing the object Z through the glass QS (which by refraction causeth the rays ZQ, ZS, etc., to converge) should judge it to be at such a nearness at which if it were placed it would radiate on the eye with rays diverging to that degree as would produce the same confusion which is now produced by converging rays, i.e. would cover a portion of the retina equal to DC (VID. Fig. 3 supra). But then this must be understood (to use Dr. Barrow's phrase) SECLUSIS PRAENOTIONIBUS ET PRAEJUDICIIS, in case we abstract from all other circumstances of vision, such as the figure, size, faintness, etc. of the visible objects; all which do ordinarily concur to form our idea of distance, the mind having by frequent experience observed their several sorts or degrees to be connected with various distances.
37. It plainly follows from what hath been said that a person perfectly purblind (i.e. that could not see an object distinctly but when placed close to his eye) would not make the same wrong judgment that others do in the forementioned case. For to him greater confusions constantly suggesting greater distances, he must, as he recedes from the glass and the object grows more confused, judge it to be at a farther distance, contrary to what they do who have had the perception of the objects growing more confused connected with the idea of approach.
38. Hence also it doth appear there may be good use of computation by lines and angles in optics; not that the mind judgeth of distance immediately by them, but because it judgeth by somewhat which is connected with them, and to the determination whereof they may be subservient. Thus the mind judging of the distance of an object by the confusedness of its appearance, and this confusedness being greater or lesser to the naked eye, according as the object is seen by rays more or less diverging, it follows that a man may make use of the divergency of the rays in computing the apparent distance, though not for its own sake, yet on account of the confusion with which it is connected. But, so it is, the confusion itself is entirely neglected by mathematicians as having no necessary relation with distance, such as the greater or lesser angles of divergency are conceived to have. And these (especially for that they fall under mathematical computation) are alone regarded in determining the apparent places of objects, as though they were the sole and immediate cause of the judgments the mind makes of distance. Whereas, in truth, they should not at all be regarded in themselves, or any otherwise, than as they are supposed to be the cause of confused vision.